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Abstract— In this paper we prove an existence as well as approximation result for nonlinear quadratic functional integral equation with 
maxima .An algorithm for the solution is developed and it is shown that the sequence of successive approximation starting with a lower or 
an upper solution converges monotonically to the solution of related quadratic functional integral equation with maxima under some 
suitable mixed hybrid conditions.We base our main results on the Dhage iteration method embodied in a recent hybrid fixed point theorem 
of Dhage 2014 in a partially ordered normed linear space. An example illustrating the existence result is also presented. 

Index Terms— Quadratic functional integral equation with maxima, hybrid fixed point theorem, approximate solution, iteration method  

——————————      —————————— 

1 INTRODUCTION                                                                   

he  quadratic integral equations have been a topic of inter-
est since long time because of their occurrence in the problems 
of some natural and physical processes of the universe .See 
Argyros[2], Deimling [6], Chandrasekher [4] and the refer-
ences therin. The study gained momentum after the formula-
tion of fixed point principles in Banach algebras due to Dhage 
[12], [14]. The existence results for such equations are general-
ly proved uder the mixed Lipschitz and compactness type 
conditions together with a certain growth condition on the 
nonlinearities of the quadratic integral equations. See Dhage 
[12], [14] and the references therein. The Lipschitz and com-
pactness hypoteses are considered to be very strong condi-
tions in the theory of nonlinear differential and integral equa-
tions which do not yield any algorithm to determine the nu-
merical solutions. Therefore, it is of interest to relax or weaken 
these conditions in the existence and approximation theory of 
quadratic integral equations.However, the literature on exis-
tence results for  a special class of functional differential equa-
tions, namely nonlinear quadratic differential equations with 
maxima under weaker partial Lipschitz and partial compact-
ness type conditions via Dhage iteration method is not 
enriched yet, recently, the first authors in [14] ,[15],[16] have 
studied the existence results of functional differential equa-
tions with maxima. Therefore, it is admirable to extend this 
method to nonlinear quadratic integral equations with max-
ima. This is the main motivation of the present paper. 
     In this paper we prove the existence as well as approxima-
tions of the positive solutionsof a certain quadratic integral 
equation with maxima via an algorithm based on  successive  
approximations under partially Lipschitz and compactness 
conditions. 
  Given a closed and bounded interval J = [0, T] of the real line 
R for some T > 0, we consider the quadratic functional integral 
equation (in short QFIE) with maxima  
 

𝑥𝑥(𝑡𝑡) = 𝑓𝑓[𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑋𝑋(𝑡𝑡)]�𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

�                    (1) 

 
for all t ∈ J, where the functions f, g : J × R × R → R, are conti-
nuous functions, and X(t)  =  x(η)0≤η≤t

max . 
By a solution of the QFIE (1.1) with maxima we mean a func-
tion x ∈ C (J, R) that satisfies the equation (1.1) on J, where C(J, 
R) is the space of continuous real-valued functions defined on 
J. 
The QFIE (1.1) with maxima is new to the literature. In partic-
ular, If g (t, x, y) = 0 for all t ∈ J and x, y ∈ R the QFIE (1.1) with 
maxima reduces to the nonlinear functional equation with 
maxima 
 
           𝑥𝑥(𝑡𝑡) = 𝑓𝑓�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑋𝑋(𝑡𝑡)�, 𝑡𝑡 ∈ 𝐽𝐽                                              (2) 
 
 and  if f (t, x, y) = 1 for all t ∈ J and x, y ∈ R, it is reduced to 
nonlinear usual Volterra integral equation with maxima 

𝑥𝑥(𝑡𝑡) =   𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

                                                   (3)  

Therefore, the QFIE (1) is general and the results of this paper 
include the existence and approximations results for above 
nonlinear functional and Volterra integral equations with max-
ima as special cases. 
 

2 AUXILIARY RESULTS 
Unless otherwise mentioned, throughout this paper that fol-
lows, let E denote a partially ordered real normed linear space 
with an order relation ≤ and the norm ‖. ‖ in which the addi-
tion and thescalar multiplication by positive real numbers are 
preserved  by  ≤  . 
 

T 
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A few details of a partially ordered normed linear space ap-
pear in Dhage [10], Heikkilla and Lakshmikantham [18] and 
the references therein. 
We need the following notion and results. 

Definition 2.1. 
A mapping T ∶  E →  E  is called isotone or monotone nonde-
creasing if it preserves the order relation  ≤  that is, if x ≤
y implies T x ≤ T y for all x, y ∈  E. Similarly, T is called mono-
tone nonincreasing if x ≥  y implies T x ≥ T y  for all  x;  y ∈  E. 
Finally, T is called monotonic or simply monotone if it is either 
monotone nondecreasing or monotone nonincreasing on E. 

Definition 2.2. 
A mapping T ∶  E →  E  is called partially continuous at a point 
a ∈  E if for ∈>  0 there exists  a  𝛿𝛿 > 0  such that �𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦�  <∈
 whenever x is comparable to a and  ‖𝑥𝑥 − 𝑎𝑎‖ < 𝛿𝛿 . T called par-
tially continuous on E if it is partially continuous at every 
point of it. It is clear that if T is partially continuous on E, then 
it is continuous on every chain C contained in E. 

Definition 2.3. 
A non-empty subset S of the partially ordered Banach space E 
is called partially bounded if every chain C in S is bounded. 
An operator T on a partially normed linear space E into itself 
is called partially bounded if T (E) is a partially bounded sub-
set of E. T is called uniformly partially bounded if all chains C 
in T (E) are bounded by a unique constant. 

Definition 2.4. 
A non-empty subset S of the partially ordered Banach space E 
is called partially compact if every chain C in S is a relatively 
compact subset of E. A mapping T ∶  E →  E is called partially 
compact if T (E) is a partially relatively compact subset of E. T 
is called uniformly partially compact if T is a uniformly par-
tially bounded and partially compact operator on E. T is called 
partially totally bounded if for any bounded subset S of E, T 
(S) is a partially relatively compact subset of E. If T is partially 
continuous and partially totally bounded, then it is called par-
tially completely continuous on E. 

Remark 2.5. 
Suppose that T is a nondecreasing operator on E into itself. 
Then T is a partially bounded or partially compact if T (C) is a 
bounded or relatively compact subset of E for each chain C in 
E. 

Definition 2.6. 
The order relation ≤ and the metric d on a non-empty set E are 
said to be compatible if {𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁  is a monotone, that is, mono-
tone nondecreasing or monotone nonincreasing sequence in E 
and if a subsequence {𝑥𝑥𝑛𝑛𝑛𝑛 } 𝑛𝑛∈𝑁𝑁  of {𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁  converges to 𝑥𝑥∗ im-
plies that the original sequence {𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁  converges to  𝑥𝑥∗. Simi-
larly, given a partially ordered normed linear space (𝐸𝐸,≤, ‖. ‖) 
the order relation ≤ and the norm ‖. ‖ are said to be compati-

ble if ≤ and the metric d defined through the norm ‖. ‖ are 
compatible. 
Clearly, the set R of real numbers with usual order relation ≤ 
and the norm ‖. ‖ defined by the absolute value function 
|. | has this property. Similarly, the finite dimensional Eucli-
dean space 𝑅𝑅𝑛𝑛  with usual componentwise order relation and 
the standard norm possesses the compatibility property. 

Definition 2.7. 
A upper semi-continuous and monotone nondecreasing func-
tion   𝜓𝜓: 𝑅𝑅+ → 𝑅𝑅+ is called a D-function provided 𝜓𝜓(r)  =
 0 iff r =  0. Let (E,≤, ‖. ‖) be a partially ordered normed linear 
space. A mapping T ∶  E →  E is called partially nonlinear D-
Lipschitz if there exists a D-function  𝜓𝜓: 𝑅𝑅+ → 𝑅𝑅+  such that 
 
                 �𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦� ≤ 𝜓𝜓(‖𝑥𝑥 − 𝑦𝑦‖                                                   (3)  
 
for all comparable elements x, y ∈  E.  If 𝜓𝜓(r)  =  k r, k > 0, then 
T is called a partially Lipschitzwith a Lipschitz constant k. 
Let (E,≤, ‖. ‖) be a partially ordered normed linear algebra. 
Denote 
E+ = {𝑥𝑥 ∈ 𝐸𝐸| 𝑥𝑥 ≥ 𝜃𝜃, where θ is the zero element of E }  
And 
𝐾𝐾 = {𝐸𝐸+ ⊂ 𝐸𝐸|𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸+for all u, v ∈ 𝐸𝐸+}                                   (4) 
The elements of K are called the positive vectors of the 
normed linear algebra E. The following lemma follows imme-
diately from the definition of the set K and which is often 
times used in the applications of hybrid fixed point theory in 
Banach algebras. 

Remark 2.8.(Dhage [10]) 
If u1, u2, v1 , v2  ∈ K are such that u1  ≤ v1 and u2  ≤ v2, then 
𝑢𝑢1𝑢𝑢2 ≤ 𝑢𝑢1𝑢𝑢2. 

Definition 2.9. 
An operator T ∶  E →  E  is said to be positive if the range R(T ) 
of T is such that R(T )  ⊂  K. 

Theorem 2.10(Dhage [10]) 
Let (E,≤, ‖. ‖) be a regular partially ordered complete normed 
linear algebra such that the order relation ≤ and the norm ‖. ‖ 
in E are compatible in every compact chain of E. Let A, B: E →
 E be two nondecreasing operators such that 
(a) A is partially bounded and partially nonlinear D-Lipschitz 
with D-functions 𝜓𝜓𝐴𝐴. 
(b) B is partially continuous and uniformly partially compact. 
(c)M ψA (r)  <  𝑟𝑟, r >  0,where 
M =  sup{‖B(C)‖ ∶  C is a chain in E} and 
(d) there exists an element 𝑥𝑥0 ∈ 𝑋𝑋 such that x0 ≤ Ax0 Bx0 or 
x0 ≥ Ax0 Bx0.  
 
 
Then the operator equation 
                               𝐴𝐴𝑥𝑥 𝐵𝐵𝑥𝑥 =  𝑥𝑥                                                                (5) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016                                                                                        403 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

 
has a solution 𝑥𝑥∗ in E and the sequence {𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁  of successive 
iterations defined by  xn+1  =  Axn Bxn , n = 0,1,……. converges 
monotonically to 𝑥𝑥∗. 

Remark 2.11. 
The compatibility of the order relation ≤ and the norm ‖. ‖ in 
every compact chain of E holds if every partially compact sub-
set of E possesses the compatibility property with respect to ≤ 
and ‖. ‖. This simple fact has been utilized to prove the main 
results of this paper. 

 

3   EXISTENCE AND APPROXIMATION RESULT 

The QFIE (1) is considered in the function space 𝐶𝐶(𝐽𝐽,𝑅𝑅) of con-
tinuous real-valued functions 
defined on J. We define a norm ‖. ‖ and the order relation ≤ in 
𝐶𝐶(𝐽𝐽,𝑅𝑅) by 
 
                            ‖𝑥𝑥‖ = |𝑥𝑥(𝑡𝑡)|𝑡𝑡∈𝐽𝐽

𝑠𝑠𝑢𝑢𝑠𝑠                                                  (6) 
And 
 
                     𝑥𝑥 ≤ 𝑦𝑦 ⇒  𝑥𝑥(𝑡𝑡) ≤ 𝑦𝑦(𝑡𝑡)   ∀ 𝑡𝑡 ∈  𝐽𝐽.                           (7) 
 respectively. Clearly, C(J;R) is a Banach algebra with respect 
to above supremum norm and is also partially ordered w.r.t. 
the above partially order relation ≤. It is known that the par-
tially ordered Banach algebra C(J;R) has some nice properties 
concerning the compatibility property with respect to the 
norm ‖. ‖ and the order relation ≤ in certain subsets of of it. 
The following lemma in this connection follows by an applica-
tion of Arzella-Ascoli theorem. 
 

Lemma 3.1. 
Let (C(J, R) ,≤, ‖. ‖) be a partially ordered Banach space with 
the norm ‖. ‖ and the order relation ≤ defined by (6) and (7) 
respectively. Then every partially compact subset S of (𝐽𝐽;𝑅𝑅) , 
‖. ‖ and ≤ are compatible in every compact chain C in S. 
Proof. Let S be a partially compact subset of C(J;R) and let 
{𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁  be a monotone nondecreasing sequence of points in S. 
Then we have 
𝑥𝑥1(𝑡𝑡) ≤   𝑥𝑥2(𝑡𝑡)  ≤ _ _ _ _ _ 𝑥𝑥𝑛𝑛(𝑡𝑡)                                                   (8) 

for each 𝑡𝑡 ∈  𝐽𝐽. Suppose that a subsequence {𝑥𝑥𝑛𝑛𝑛𝑛 } 𝑛𝑛∈𝑁𝑁  of 
{𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁  is convergent and converges to a point x in S. Then 
the subsequence {𝑥𝑥𝑛𝑛𝑛𝑛 } 𝑛𝑛∈𝑁𝑁   of the monotone real sequence 
{𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁  is convergent. By monotone characterization, the 
whole sequence {𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁   is convergent and converges to 
a point x(t) in R for each 𝑡𝑡 ∈  𝐽𝐽. This shows that the sequence 
{𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁   converges to x point-wise on J. To show the conver-
gence is uniform, it is enough to show that the sequence  
 
{𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁    is equicontinuous. Since S is partially compact, every 
chain or totally ordered set and consequently   {𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁 is an 

equicontinuous sequence by Arzel_a-Ascoli theorem. Hence 
{𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁   is convergent and converges uniformly to x. As a re-
sult ‖. ‖  and ≤  are compatible in S. This completes the proof. 
We need the following definition in what follows 

Definition 3.2. 
A function 𝑢𝑢 ∈ 𝐶𝐶(𝐽𝐽;𝑅𝑅) is said to be a lower solution of the 
QFIE (1) if it satisfies  

𝑥𝑥(𝑡𝑡) = 𝑓𝑓[𝑡𝑡,𝑢𝑢(𝑡𝑡),𝑈𝑈(𝑡𝑡)]�𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠,𝑢𝑢(𝑠𝑠),𝑈𝑈(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

� 

 
for all 𝑡𝑡 ∈ 𝐽𝐽. Similarly, a function 𝑢𝑢 ∈ 𝐶𝐶(𝐽𝐽;𝑅𝑅) is said to be an 
upper solution of the QFIE (1) with maxima if it satisfies the 
above inequalities with reverse sign. 
We consider the following set of assumptions in what follows 
(𝐴𝐴1 ) q defines a continuous function 𝑞𝑞 ∶  𝐽𝐽 →  𝑅𝑅+ 
(𝐴𝐴2  ) The function f is nonnegative on 𝑓𝑓 ∶  𝐽𝐽 ×  𝑅𝑅 ×  𝑅𝑅 →  𝑅𝑅 
(𝐴𝐴3  ) There exists a D-function 𝜓𝜓𝑓𝑓  such that 

0 ≤  𝑓𝑓 (𝑡𝑡, 𝑥𝑥1 , 𝑥𝑥2 )  −  𝑓𝑓 (𝑡𝑡,𝑦𝑦1 ,𝑦𝑦2)  
≤ 𝜓𝜓𝑓𝑓  (𝑚𝑚𝑎𝑎𝑥𝑥{𝑥𝑥 1 −  𝑦𝑦 1, 𝑥𝑥2  −  𝑦𝑦 2}) 

   for all t ∈ J and 𝑥𝑥1 , 𝑥𝑥2 , 𝑦𝑦2 , 𝑦𝑦2 ∈ R, 𝑥𝑥1  ≥  𝑦𝑦1 ,  𝑥𝑥2 ≥  𝑦𝑦2. 
(𝐴𝐴4  ) There exists a constant 𝑀𝑀𝑓𝑓  such that 0 ≤ f (t, x, y) ≤ 𝑀𝑀𝑓𝑓  for 
all t ∈ J and x, y ∈ R. 
(𝐴𝐴5  ) g (t, x, y) is nondecreasing in x and y for all t ∈ J. 
(𝐴𝐴6  ) There exists a constant 𝑀𝑀𝑔𝑔  > 0 such that g (t, x, y) ≤ 𝑀𝑀𝑔𝑔for 
all t ∈ J and x, y ∈ R. 
(𝐴𝐴7  ) The QFIE (1) with maxima has a lower solution  
u ∈ C (J, R). 

Theorem3.3. 
Assume that hypotheses (𝐴𝐴1) - (𝐴𝐴7) hold. Furthermore, assume 
that  
                      ( 𝑞𝑞 +  𝑇𝑇 𝑀𝑀𝑔𝑔 ) 𝜓𝜓𝑓𝑓 (𝑟𝑟)  <  𝑟𝑟, 𝑟𝑟 >  0,                       (9) 
                       
then the QFIE (1) with maxima has a solution 𝑥𝑥∗ defined on J 
and the sequence {𝑥𝑥𝑛𝑛  } n∈N   of successive approximations 
defined by  

𝑥𝑥𝑛𝑛+1(𝑡𝑡) = 𝑓𝑓[𝑡𝑡, 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑋𝑋𝑛𝑛(𝑡𝑡)]�𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠, 𝑥𝑥𝑛𝑛(𝑠𝑠),𝑋𝑋𝑛𝑛(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

� 

 
for all t ∈ J, where 𝑥𝑥0 = u and 𝑋𝑋𝑛𝑛  (𝑡𝑡)  =  𝑥𝑥𝑛𝑛0≤𝜂𝜂≤𝑡𝑡

𝑚𝑚𝑎𝑎𝑥𝑥  (𝜂𝜂), converges 
monotonically to 𝑥𝑥∗ . 
Proof.  Set E = C(J;R). Then, from Lemma 3.1 it follows that 
every compact chain in E possesses the compatibility property 
with respect to the norm ‖. ‖ and the order relation   ≤  in 
E. 
Define two operators A and B on E by  
 𝐴𝐴𝑥𝑥(𝑡𝑡)  =  𝑓𝑓 (𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑋𝑋(𝑡𝑡)), 𝑡𝑡 ∈  𝐽𝐽                                             (10) 
and 

 
     𝐵𝐵𝑥𝑥(𝑡𝑡) =   𝑞𝑞(𝑡𝑡) + ∫ 𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡

0                        (10)              
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From the continuity of the integral and the hypotheses (A1)-
(A6), it follows that A and B define the maps A, B: E →  E . 
Now by definitions of the operators A and B, the QFIE (1) is 
equivalent to the operator equation 
 
            𝐴𝐴𝑥𝑥(𝑡𝑡)𝐵𝐵𝑥𝑥(𝑡𝑡)  =  𝑥𝑥(𝑡𝑡),        𝑡𝑡 ∈  𝐽𝐽.                           (11) 
We shall show that the operators A and B satisfy all the condi-
tions of Theorem 2.10. This is achieved in the series of follow-
ing steps 
Step I:  A  and  B are nondecreasing on E. 
Let x, y ∈ E be such that x ≥ y. Then x (t) ≥ y(t) for all t ∈ J. Since 
y is continuous on [a, t], there exists a 𝜂𝜂 ∗ ∈ [a, t] such that 
 y (𝜂𝜂 ∗) = max y(η). By definition of ≤, one has x (𝜂𝜂 ∗) ≥ y (𝜂𝜂 ∗) 
Consequently, we obtain 
𝑋𝑋 (𝑡𝑡) =   𝑥𝑥0≤𝜂𝜂≤𝑡𝑡

𝑚𝑚𝑎𝑎𝑥𝑥  (𝜂𝜂) =  x(𝜂𝜂 ∗) ≥  y (𝜂𝜂 ∗) =  𝑦𝑦0≤𝜂𝜂≤𝑡𝑡
𝑚𝑚𝑎𝑎𝑥𝑥  (𝜂𝜂) = 𝑌𝑌 (𝑡𝑡)  

for each t ∈ J. Then by hypothesis (A2), we obtain 
𝐴𝐴  𝑥𝑥(𝑡𝑡)  =  𝑓𝑓 (𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑋𝑋(𝑡𝑡))  ≥  𝑓𝑓 (𝑡𝑡,𝑦𝑦(𝑡𝑡),𝑌𝑌 (𝑡𝑡)))  =  𝐴𝐴𝑦𝑦(𝑡𝑡) 

for all t ∈ J. This shows that A is nondecreasing operators on E 
into E. Similarly, using hypothesis (A5), 

𝐵𝐵𝑥𝑥(𝑡𝑡) =   𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

 

              ≥   𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑌𝑌(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

 

                             = 𝐵𝐵𝑦𝑦(𝑡𝑡)   
 for all t ∈ J. Hence, it is follows that the operator B is also a 
nondecreasing operator on E into itself. Thus, A and B are 
nondecreasing positive operators on E into itself 
Step II: A is partially bounded and partially D-Lipschitz on E. 
Let x ∈ E be arbitrary. Then by (𝐴𝐴2), 

|𝐴𝐴𝑥𝑥(𝑡𝑡)|  ≤  𝑓𝑓 (𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑋𝑋(𝑡𝑡))  ≤  𝑀𝑀𝑓𝑓 , 
for all t ∈ J. Taking supremum over t, we obtain Ax ≤ Mf and 
so, A is bounded. This further implies that A is partially 
bounded on E. Next, let 𝑥𝑥,𝑦𝑦 ∈  𝐸𝐸 be such that  𝑥𝑥 ≥  𝑦𝑦. Then, 
we have 

|𝑥𝑥(𝑡𝑡)  −  𝑦𝑦(𝑡𝑡)|  ≤  |𝑋𝑋(𝑡𝑡)  −  𝑌𝑌 (𝑡𝑡)| 
 and  

|𝑋𝑋(𝑡𝑡)  −  𝑌𝑌 (𝑡𝑡)|  =  𝑋𝑋(𝑡𝑡)  −  𝑌𝑌 (𝑡𝑡) 
 
                                                              =   𝑥𝑥𝑡𝑡0≤𝜂𝜂≤𝑡𝑡

𝑚𝑚𝑎𝑎𝑥𝑥  (𝜂𝜂) −  𝑦𝑦𝑡𝑡0≤𝜂𝜂≤𝑡𝑡
𝑚𝑚𝑎𝑎𝑥𝑥  (𝜂𝜂)  

                               
                                                             =  [ 𝑥𝑥𝑡𝑡0≤𝜂𝜂≤𝑡𝑡

𝑚𝑚𝑎𝑎𝑥𝑥  (𝜂𝜂) − 𝑦𝑦 (𝜂𝜂)]  
 

               ≤  ‖𝑥𝑥 − 𝑦𝑦‖ 
for each t ∈ J. As a result, by hypothesis (A3 ), 

|𝐴𝐴𝑥𝑥(𝑡𝑡) −  𝐴𝐴𝑦𝑦(𝑡𝑡)| =  |𝑓𝑓 (𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑋𝑋(𝑡𝑡))  −  𝑓𝑓 (𝑡𝑡,𝑦𝑦(𝑡𝑡),𝑌𝑌 (𝑡𝑡))| 
 

                                        ≤  𝜓𝜓𝑓𝑓 (𝑚𝑚𝑎𝑎𝑥𝑥{|𝑥𝑥(𝑡𝑡)  −  𝑦𝑦(𝑡𝑡)| , |𝑋𝑋(𝑡𝑡)  −  𝑌𝑌 (𝑡𝑡)|}) 
 ≤  𝜓𝜓𝑓𝑓 (‖ 𝑥𝑥 −  𝑦𝑦 ‖) 

for all t ∈ J. Taking supremum over t, we obtain 
‖𝐴𝐴𝑥𝑥 −  𝐴𝐴𝑦𝑦 ‖ ≤  𝜓𝜓𝑓𝑓 (‖ 𝑥𝑥 −  𝑦𝑦 ‖) 

for all x, y ∈ E with x ≥ y. Hence A partially nonlinear D-
Lipschitz operators on E which further implies that A  partial-
ly continuous on E. 

Step III: B is a partially continuous operator on E. 
Let {𝑥𝑥𝑛𝑛} 𝑛𝑛∈𝑁𝑁    be a sequence in a chain C of E such that 𝑥𝑥𝑛𝑛  →  𝑥𝑥 
for all n ∈ N. Then, by dominated convergence theorem, we 
have 

lim
𝑥𝑥→∞

𝐵𝐵𝑥𝑥𝑛𝑛(𝑡𝑡) =  lim
𝑥𝑥→∞

𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠, 𝑥𝑥𝑛𝑛(𝑠𝑠),𝑋𝑋𝑛𝑛(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

 

 

                  = 𝑞𝑞(𝑡𝑡) + � lim
𝑥𝑥→∞

[𝑔𝑔(𝑠𝑠, 𝑥𝑥𝑛𝑛(𝑠𝑠),𝑋𝑋𝑛𝑛(𝑠𝑠)]𝑑𝑑𝑠𝑠
𝑡𝑡

0

 

        = 𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠, 𝑥𝑥𝑛𝑛(𝑠𝑠),𝑋𝑋𝑛𝑛(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

 

                                  = 𝐵𝐵𝑥𝑥(𝑡𝑡) 
for all t ∈ J. This shows that Bxn converges monotonically to 
Bx pointwise on J. Next, we will show that {𝐵𝐵𝑥𝑥𝑛𝑛  }𝑛𝑛∈𝑁𝑁  is an 
equicontinuous sequence of functions in E. Let 
𝑡𝑡1 , 𝑡𝑡2 ∈  𝐽𝐽  be  arbitrary with 𝑡𝑡 1 <  𝑡𝑡2 . Then 
 

|𝐵𝐵𝑥𝑥𝑛𝑛(𝑡𝑡2) − 𝐵𝐵𝑥𝑥𝑛𝑛(𝑡𝑡1)| =   |𝑞𝑞(𝑡𝑡2) −  𝑞𝑞(𝑡𝑡1)| 

+ �� 𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)𝑑𝑑𝑠𝑠

𝑡𝑡2

0

−� 𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)𝑑𝑑𝑠𝑠

𝑡𝑡1

0

� 

 

=   |𝑞𝑞(𝑡𝑡2) −  𝑞𝑞(𝑡𝑡1)| + �� |𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)|𝑑𝑑𝑠𝑠

𝑡𝑡2

𝑡𝑡1

� 

 
                ≤  |𝑞𝑞(𝑡𝑡2) −  𝑞𝑞(𝑡𝑡1)|  +  𝑀𝑀𝑔𝑔 |𝑡𝑡2  −  𝑡𝑡1| 
 

→ 0   , 𝑡𝑡2 −  𝑡𝑡1 →  0 
 
uniformly for all n ∈ N. This shows that the convergence B𝑥𝑥𝑛𝑛  
→ Bx is uniform and hence B is partially continuous on E. 
Step IV: B is uniformly partially compact operator on E. 
Let C be an arbitrary chain in E. We show that B(C) is a un-
iformly bounded and equi-continuous set in E. First we show 
that B(C) is uniformly bounded. Let y ∈ B(C) be any element 
Then there is an element x ∈ C be such that y = Bx. Now, by 
hypothesis (A5), 
 

𝑦𝑦(𝑡𝑡) =   𝑞𝑞(𝑡𝑡) + �|𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)|𝑑𝑑𝑠𝑠
𝑡𝑡

0

 

                                  ≤ 𝑞𝑞 +  𝑀𝑀𝑔𝑔 𝑇𝑇 
                                  ≤  𝑟𝑟 

 
for all t ∈ J. Taking the supremum over t, we obtain y ≤ Bx ≤ r 
for all y ∈ B(C). Hence, B(C) is a uniformly bounded subset of 
E. Moreover, B(C) ≤ r for all chains C in E. Hence B is a un-
iformly partially bounded operator on E Next, we will show 
that B(C) is an equicontinuous set in E. Let t1 , t2 ∈ J be arbi-
trary with t1 < t2 . Then, for any y ∈ B(C), one has 

|𝑦𝑦(𝑡𝑡2) − 𝑦𝑦(𝑡𝑡1)| =   |𝐵𝐵𝑥𝑥(𝑡𝑡2) −  𝐵𝐵𝑥𝑥(𝑡𝑡1)| 
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|𝑞𝑞(𝑡𝑡1) −  𝑞𝑞(𝑡𝑡2)| + �� 𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)𝑑𝑑𝑠𝑠

𝑡𝑡2

0

−� 𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)𝑑𝑑𝑠𝑠

𝑡𝑡1

0

� 

 

=   |𝑞𝑞(𝑡𝑡1) −  𝑞𝑞(𝑡𝑡2)| + �� |𝑔𝑔(𝑠𝑠, 𝑥𝑥(𝑠𝑠),𝑋𝑋(𝑠𝑠)|𝑑𝑑𝑠𝑠

𝑡𝑡2

𝑡𝑡1

� 

 
                ≤  |𝑞𝑞(𝑡𝑡1) −  𝑞𝑞(𝑡𝑡2)|  +  𝑀𝑀𝑔𝑔 |𝑡𝑡2  −  𝑡𝑡1| 
 

→ 0   , 𝑡𝑡2 −  𝑡𝑡1 →  0 
uniformly for all y ∈ B(C). Hence B(C) is an equicontinuous 
subset of E. Now, B(C) is a uniformly bounded and equiconti-
nuous set of functions in E, so it is compact. Consequently, B is 
a uniformly partially compact operator on E into itself. 
Step  V :  u satisfies the operator inequality u ≤ Au Bu. 
By hypothesis (A7), the QFIE (1) has a lower solution u 
defined on J. Then, we have 

𝑢𝑢(𝑡𝑡) = 𝑓𝑓[𝑡𝑡,𝑢𝑢(𝑡𝑡),𝑈𝑈(𝑡𝑡)]�𝑞𝑞(𝑡𝑡) + �𝑔𝑔(𝑠𝑠,𝑢𝑢(𝑠𝑠),𝑈𝑈(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0

� 

                                                                                                        (12) 
 
for all t ∈ J. From the definitions of the operators A and B it 
follows that u(t) ≤ Au(t) Bu(t) for all t ∈ J, hence u ≤ Au Bu. 
 
Step  VI  :  The D-functions ψA satisfy the growth condition M 
ψA (r) < r, for r > 0.Finally, the D-function ψA of the operator A 
satisfiy the inequality given in hypothesis (d) of Theorem 2.10, 
viz., 

𝑀𝑀 𝜓𝜓𝐴𝐴 (𝑟𝑟)  ≤  ( 𝑞𝑞 +  𝑀𝑀𝑔𝑔 𝑇𝑇 ) 𝜓𝜓𝑓𝑓 (𝑟𝑟)  <  𝑟𝑟 
for all 𝑟𝑟 >  0. 
Thus A, B and C satisfy all the conditions of Theorem 2.10 and 
we conclude that the operator equation Ax Bx = x has a solu-
tion. Consequently the QFIE (1) has a solution x∗ defined on 
J. Furthermore, the sequence {xn} n∈N of successive approxima-
tions defined by (3.5) converges monotonically to x∗. This 
completes the proof. 

Example 
Given a closed and bounded interval J = [0, 1], consider the 
QFIE, 
𝒙𝒙(𝒕𝒕) = [𝟐𝟐 + 𝒂𝒂𝒂𝒂𝒂𝒂𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂(𝒕𝒕)] � 𝟏𝟏

𝒕𝒕+𝟏𝟏
+ ∫ [𝟏𝟏+𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂(𝒔𝒔)]

𝟒𝟒
𝒕𝒕
𝟎𝟎 �                           

(13) 
 
For t∈ 𝐽𝐽, where𝑋𝑋(𝑡𝑡) =  𝑥𝑥𝑡𝑡0≤𝜂𝜂≤𝑡𝑡

𝑚𝑚𝑎𝑎𝑥𝑥  (𝜂𝜂). 
Here, 𝑞𝑞(𝑡𝑡) = 𝑡𝑡

𝑡𝑡+1
 which is continuous and 𝑞𝑞(𝑡𝑡) = 1

2
.Similarly, 

the functions f and g are 
defined by 

𝑓𝑓(𝑡𝑡, 𝑥𝑥,𝑦𝑦) = [2 + 𝑎𝑎𝑟𝑟𝑎𝑎𝑡𝑡𝑎𝑎𝑛𝑛𝑥𝑥 + 𝑎𝑎𝑟𝑟𝑎𝑎𝑡𝑡𝑎𝑎𝑛𝑛𝑦𝑦] 

𝑔𝑔(𝑡𝑡, 𝑥𝑥,𝑦𝑦) = 𝑔𝑔(𝑡𝑡, 𝑥𝑥) =
1 + 𝑡𝑡𝑎𝑎𝑛𝑛ℎ𝑥𝑥

4
 

 
The function f satisfies the hypothesis (A3) with  𝜓𝜓𝑓𝑓 (𝑟𝑟) = 𝑟𝑟

1+𝜂𝜂2 

For each 0 < 𝜂𝜂 < 𝑟𝑟.  To see this, we have 
                    0 ≤ 𝑓𝑓(𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2) − 𝑓𝑓(𝑡𝑡,𝑦𝑦1,𝑦𝑦2) 
 
                     ≤ 1

1+𝜂𝜂2 (𝑥𝑥1 − 𝑦𝑦1) + 1
1+𝜂𝜂2 (𝑥𝑥2 − 𝑦𝑦2) 

≤
1

1 + 𝜂𝜂2 𝑚𝑚𝑎𝑎𝑥𝑥{𝑥𝑥1 − 𝑦𝑦1, 𝑥𝑥2 − 𝑦𝑦2} 

 
for all x1 , y1 , x2 , y2 ∈ R, x1 ≥ y1 and x2 > ξ > y2 . Moreover, the 
function f is nonnegative and bounded on J × R × R with 
bound Mf = 3 and so the hypothesis (A2 ) is satisfied.Again, 
since g is nonnegative and bounded on J ×R×R with bound Mg 
= 1

2
 the hypothesis(A5 ) holds. Furthermore, g(t, x, y) = g(t, x) is 

nondecreasing in x and y for all t ∈ J, and thus hypothesis (A6 
) is satisfied.Thus, condition (9) of Theorem 3.3 is held. Finally, 
the QFIE (13) has a lower solution u (t) = 0 on J. Thus all the 
hypotheses of Theorem 3.3 are satisfied. Hence we apply 
Theorem 3.3 and conclude that the QFIE (13) has a solution x∗ 

defined on J and the sequence {xn} n∈N defined by for all t ∈ J, 
where x0 = 0, converges monotonically to x∗. 
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